The notion of independence in the theory of evidence: An algebraic study
نویسنده
چکیده
In this paper we discuss the nature of independence of sources in the theory of evidence from an algebraic point of view, starting from an analogy with projective geometries. Independence in Dempster’s rule is equivalent to independence of frames as Boolean algebras. Collection of frames, in turn, can be given several algebraic interpretations in terms of semimodular lattices, matroids, and geometric lattices. Each of those structures are endowed with a particular notion of independence, which we prove to be distinct even though related to independence of frames. We show that the latter is in fact opposed to classical linear independence, giving collection of frames the structure of “anti-matroids”.
منابع مشابه
Rough ideals based on ideal determined varieties
The paper is devoted to concern a relationship between rough set theory and universal algebra. Notions of lower and upper rough approximations on an algebraic structure induced by an ideal are introduced and some of their properties are studied. Also, notions of rough subalgebras and rough ideals with respect to an ideal of an algebraic structure, which is an extended notion of subalgebras and ...
متن کاملAn algebraic study of the notion of independence of frames
In this paper we discuss the notion of independence of frames in the theory of evidence from an algebraic point of view, starting from an analogy with standard linear independence. Families of frames can be given several algebraic interpretations in terms of semi-modular lattices, matroids, and geometric lattices. Each of those structures are endowed with a particular (extended) independence re...
متن کاملA History of Selected Topics in Categorical Algebra I: From Galois Theory to Abstract Commutators and Internal Groupoids
This paper is a chronological survey, with no proofs, of a direction in categorical algebra, which is based on categorical Galois theory and involves generalized central extensions, commutators, and internal groupoids in Barr exact Mal’tsev and more general categories. Galois theory proposes a notion of central extension, and motivates the study of internal groupoids, which is then used as an a...
متن کاملFunctorial semantics of topological theories
Following the categorical approach to universal algebra through algebraic theories, proposed by F.~W.~Lawvere in his PhD thesis, this paper aims at introducing a similar setting for general topology. The cornerstone of the new framework is the notion of emph{categorically-algebraic} (emph{catalg}) emph{topological theory}, whose models induce a category of topological structures. We introduce t...
متن کاملAlgebraic distance in algebraic cone metric spaces and its properties
In this paper, we prove some properties of algebraic cone metric spaces and introduce the notion of algebraic distance in an algebraic cone metric space. As an application, we obtain some famous fixed point results in the framework of this algebraic distance.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2007